The Goldman Consensus statement on depression in multiple sclerosis

Goldman Consensus Group*
New York City, NY, USA.

Background. In January 2002 the New York City Chapter of the National Multiple Sclerosis Society convened a panel of experts to review the issue of depressive affective disorders associated with multiple sclerosis (MS). This Consensus Conference was supported by a grant from the Goldman family of New York City. Results. The panel reviewed summaries of current epidemiologic, neurobiologic, and therapeutic studies having to do with depressive disorders among MS patient populations. Depressive disorders occur at high rates among patients with MS, and there is reason to believe that the immunopathology of the disease is involved in the clinical expression of affective disorders. The depressive syndromes of MS have a major, negative impact on quality of life for MS sufferers, but are treatable. At the present time, most MS patients with depression do not receive adequate recognition and treatment. Conclusions. The Goldman Consensus Conference Study Group provides recommendations for improved screening, diagnosis, and clinical management for depressive affective disorders among patients suffering from MS.

Multiple Sclerosis (2005) 11, 328–337

Key words: affective disorders; cognition; depression; multiple sclerosis; neuropsychiatry

Epidemiology of depressive disorders associated with MS

The major disease burdens for the 21st century are likely to be different from those which received the greater share of medical resources during the previous one hundred years. The neuropsychiatric disorders, especially depression, already dominate the lists of leading causes of disability worldwide. The depressive spectrum disorders which occur in conjunction with various neuromedical disorders such as MS present special challenges for recognition and successful treatment. These disorders include the affective disorders which are classified in the Diagnostic and Statistical Manual of the American Psychiatric Association, fourth edition, as Major Depressive Disorder (MDD), Dysthymia, and others which fall short of criteria for MDD or Dysthymia yet still cause pain and suffering.

Reported measures of lifetime risk for depressive spectrum disorders are quite high in persons diagnosed with MS. Point prevalence rates for major depressive syndromes in MS clinic populations are in the range of 14%, but may be even higher in community samples. Lifetime risk for MDD in the MS population may be as high as 50%, while risk for all depressive disorders is even higher. These rates of major depressive disorders are significantly elevated when compared with rates of depression reported in the general US population. Almost all comparison studies have reported higher rates of depression among MS patient cohorts than among those with other chronic illnesses, including other neurologic disorders. We conclude from these reports that clinicians who care for patients with MS should expect to encounter depressive affective disorders at rates higher than those in most other chronic medical disorders.
Clinical course and natural history of depression in MS

The depressive syndromes associated with MS occur with significant frequency across the natural history of the neurological disease, including in patients with very mild forms of MS. The presence of depressive symptomatology does not correlate well with the severity of neurologic disability as measured by such instruments as the Kurtzke scales, the most commonly used, standardized measures of neurologic impairment in MS. There is reason to believe that these depressive disorders do not remit spontaneously at high rates, but may even worsen over time if not treated.

Neuromedical treatments for MS

The present neuromedical treatments for MS emphasize agents that are immunologically active, including corticosteroids, beta interferons, glatiramer acetate, and immunosuppressants. Corticosteroids and some interferons are suspected to affect mood, at least in some individuals.

Corticosteroids, which are often used in high doses to treat MS exacerbations, are associated with a variety of neuropsychiatric side effects. Typically, their short-term use produces increased energy, decreased sleep, and variable euphoria. Depressive symptoms may also occur, however, following initial administration, with long-term use, or with discontinuation of steroid dosing.

Initial studies of interferon-beta 1b, an immunomodulatory cytokine used to reduce MS disease activity over prolonged periods, found increases in depression following initiation of treatment, and increased risk of suicide attempts. A more recent report indicates that increases in depressive symptoms associated with interferon-beta 1b are more related to pretreatment levels of depressive symptomatology than to the administration of the interferon itself. A prospective study of patients assigned to interferon-beta 1b treatment has reported that the crude rate of major depression among patients receiving the interferon fell during a one-year follow-up period, from about 21% to about 6% after initiation of antidepressant pharmacotherapy. The majority of subjects with major depression in this study had a history of psychiatric illness prior to treatment with interferon-1b. The 1a interferons also have FDA labeling precautions for depression and suicide, although in the SPECTRIMS trial of Rebif in secondary progressive MS depression ratings were followed prospectively in treatment and placebo groups and no differences were found. Zephir and colleagues evaluated a cohort of MS patients before and twelve months after initiation of treatment with interferon-beta 1a and found no change on the Beck Depression Inventory. Glatiramer acetate does not seem to be associated with depressive side effects. Corroborating reports from the internal medicine literature concerning a relationship between affective disorders and the interferons have appeared, reporting rates of new onset major depression in association with the use of interferon-alpha to treat infectious and malignant syndromes approaching 50%. These conflicting data, along with the methodologic flaws in many of the studies, forbid a determination yet that the administration of interferons to patients with MS definitely increases risk for depressive disorders.

Clinical impact of depression in MS patients

There is evidence that the comorbidity of depression and MS adversely impacts functional status in several neuropsychiatric domains. Depressed MS patients perform more poorly than non-depressed MS controls on tests of cognitive function. Standardized measures of quality of life are lower in depressed MS patients than in non-depressed MS controls. Intercurrent depression in MS populations is associated with increased time lost from work. Depressed MS patients experience disruption of their social support and family systems, beyond what can be attributed to neurologic disease factors alone. There is also evidence that comorbidity of depression and MS may adversely affect long-term health outcomes by decreasing adherence to neuromedical treatment regimens for MS.

It is not known whether emotional states, including depression, can actually affect the neurobiologic course of MS. Emotionally stressful experiences are commonly reported prior to clinical exacerbations in MS. A series of prospective studies has reported a relationship between stressful life events and increased exacerbation rates in MS populations. A carefully designed prospective study which assessed rates of appearance of new gadolinium enhancing lesions found a correlation between measures of conflict and of disruption of routine, and the appearance of enhancing brain lesions. One prospective study has reported a contradictory finding, however, of reduced exacerbation rates in people with MS under threat of military attack. In the animal model most often associated with MS, experimental allergic encephalomyelitis, there are conflicting reports of the effects of various stress models on disease severity and course. Stress is a different behavioral construct from depression, however, and none of these studies bears directly upon a potential relationship between depression and disease activity in MS. At this time, we know very little about the latter question.

The Consensus Group concludes that the depressive mood disorders which occur commonly in MS are functionally impairing, even though we do not yet understand the connections between these behavioral disorders and the underlying neurobiology of the disease.

Risk for suicide

Reported rates of completed suicide in MS populations are high. Death-certificate based reviews indicate that
suicide may be the cause of death for MS clinic attenders in as many as 15% of all cases. The most important risk factor for suicide to emerge from retrospective analyses of completed suicides in MS populations is depression. The presence of clinical depression is the most powerful determinant of suicidal intent in living MS patients, although social isolation is a co-determinant. There is often a previous history of suicide attempts in completed suicides, and the suicide often follows a recent functional deterioration in the MS course. Level of neurological disability, per se, is not known to be an important risk factor for suicide. Most completed suicides in MS patients are among persons with a moderate level of disability, perhaps because severely disabled persons do not have the means.

These data concerning frequency and risk factors for suicide in MS patients add an additional dimension of clinical concern to the problem of depression in this population. The single most useful step we can take with regard to primary prevention of suicide in MS is the better identification and treatment of the depressive disorders.

Neurobiological factors

Several lines of evidence suggest that neurobiological risk factors specifically associated with MS contribute to the increased risk of depressive disorders among these patients.

Hypothalamic feedback regulation is abnormal in many MS patients, with or without depressive symptoms. The dexamethasone suppression test measures the inhibitory feedback sensitivity of the hypothalamic pituitary axis to an exogenous dose of the glucocorticoid, dexamethasone. In a normal axis a small dose of dexamethasone, 1.5 or 2.0 mg in the evening, suppresses glucocorticoid secretion for twenty four hours. Fifty percent of MS patients demonstrate ‘escape,’ or failure of suppression. This abnormality on the dexamethasone suppression test in nondepressed MS patients is similar to the pattern of abnormalities seen in many patients with major depressive episodes. Failure to respond to dexamethasone challenge has also been associated with the presence of gadolinium enhancing lesions on magnetic resonance imaging in MS patients, suggesting that disease activity could be related to some of the depressive symptomatology in MS.

Some of the many in vitro immune system parameters that are altered in MS patients may, directly or indirectly, act in concert with measures of depression. For example, Mohr and colleagues have reported that stimulated interferon gamma production by lymphocytes decreases in depressed MS patients as the depression improves. Foley and colleagues have reported that depressed and anxious MS patients demonstrate a relative depletion of peripheral CD8 positive lymphocytes compared with MS patients with no affective or anxiety disorder.

Imaging studies of brain lesion distribution and metabolism have contributed some suggestion that depressed MS patients may differ from non-depressed MS patients, but there is no clear consensus about what these differences may be. When depressed and non-depressed MS populations are compared after controlling for Kurtzke ratings, one study indicated that the depressed patients demonstrated a more pronounced pattern of superior frontal and superior parietal hypointense lesions on T1 sequences. Pujol and colleagues performed an MRI imaging protocol on a cohort of MS patients who were sorted across a spectrum of depression severity according to scores on the Beck Depression Inventory, and found a pattern of left hemisphere supra-sylvian lesions in the more depressed subjects. Berg and colleagues found more right hemisphere temporal lobe lesions in depressed MS patients. Some MRI-based comparative studies have found no differences between depressed and non-depressed MS groups with regard to lesion distribution.

It is difficult to draw any definite conclusions from these studies about the role of neurobiologic processes in MS as risk factors or generators of depression. We are left with the suggestion that a variety of interactions exist between the neuroimmunology of MS and the depressive disorders, but relatively little is presently known about the specific nature of these interactions.

Cognitive interactions of affective disorders

Cognitive impairments also occur commonly among patients suffering from MS. The pattern of these cognitive impairments tends to be more circumscribed and less obvious to observers than the cognitive loss syndromes associated with the major dementing illnesses, such as Alzheimer’s disease. The cognitive functions most often affected in MS are recent memory, both visual and verbal, various dimensions of information processing, executive functions, and visual-spatial processing. A recent consensus conference has recommended a specific, ninety minute neuropsychologic battery to be used in the assessment of MS patients, called the Minimal Assessment of Cognitive Function in MS (MACFIMS).

Some of the vulnerability to affective disorders in MS patients may be conferred by these alterations in cognition, which also occur. There are reports that MS-associated mood disorders occur more commonly in MS patients with cognitive impairments, than in those who are cognitively intact. Depressed MS patients also perform more poorly than matched, non-depressed MS patients on cognitive measures which involve attention and concentration functions. Less sophisticated coping strategies may amplify the severity of mood disorders. Not all studies, however, have found a relationship between affective disorders and cognitive dysfunction in MS patients. We are left with the conclusion that the cognitive loss syndromes of MS occur with and without coexisting depression.
Psychosocial factors in depression associated with MS

Coping strategies are psychological defense mechanisms that assist in adaptation to a variety of stressful life problems, including chronic disease. A large number of coping strategies exist, including such mechanisms as escape-avoidance, planful problem solving, seeking social support, positive reappraisal, and others.67,68

Mohr and his group assessed a cohort of MS patients and found lower levels of depression to be associated with active problem solving strategies, and cognitive reframing.68 This group found strategies such as escape-avoidance, and emotional avoidance to be associated with higher levels of depression. The latter two coping strategies are similar in that they entail avoidance of the source of stress, either by attempting to escape stressful situations or attempts to disengage emotionally from stressful emotions by fantasy. Similar results, favoring self-actuating coping strategies, have been reported by other investigators.69,70 Interestingly, duration of illness seems inversely correlated with level of adjustment in this, and other, studies of coping in MS.71

The results described in these studies provide strategic direction for clinicians who advise, or counsel MS patients with depression. Depression is more than a failure of coping with psychosocial challenges, but often the psychotherapeutic treatment of depression involves a review of coping strategies.

Measurement issues in depression associated with MS

The current gold standard for diagnosis of depressive spectrum disorders is the Diagnostic and Statistical Manual, edition IV, from the American Psychiatric Association.72,73 In the real world of clinical practice, however, depression exists on a spectrum of severity, and need not meet full DSM-IV criteria to be of clinical significance.74 The Goldman Group expressed general agreement that some sort of scale-based assessment of depression in MS populations would be helpful in screening for these depressive disorders.

Mohr and his colleagues have reviewed the problem for any screening instrument that there is considerable overlap between symptoms and signs of depression, and some symptoms and signs of MS.75 Four of the nine core symptoms of depression in the Diagnostic and Statistical Manual IV (DSM-IV) of the American Psychiatric Association also occur in MS; fatigue, psychomotor retardation, decreased concentration, and sleep disturbance.76 Experienced clinicians agree that the depression associated neuropsychiatric symptoms can be distinguished from MS associated symptoms during the clinical interview. But commonly used rating scales for depression often confound these symptoms. The most commonly used depression scale in MS associated depression has been the Beck Depression Inventory, a self-report scale with 21 items.77 A cut-off score of 13 on the Beck seems to screen for about 70% of MS patients with significant depression in ambulatory settings, while still missing about 30% of such patients.78,79 An abbreviated version of the Beck Depression Inventory, the Beck Depression Inventory-Fast Screen, has been developed to select out items most sensitive to the more neurologic symptoms in MS.80

Other screening instruments that have been proposed for use in case finding for significant depression in MS populations include the Center for Epidemiologic Studies – Depression Scale (CES-D), which has gained visibility in several large World Health Organization epidemiologic studies,81 and the Chicago Multi-Scale Depression Inventory.82 The latter has subscales which help to separate depressive symptomatology that is vegetative/physical from that which is affective and cognitive. The Inventory of Depressive Symptomatology (IDS) has been used in several recent, large scale studies of depression in psychiatric populations, and has the advantage of having both clinician-rated and self-report versions.83

The Consensus Group felt that the best approach to screening for depression in general MS populations at the present time was to use the Beck Inventory, with a cutoff score of 13.

Treatment efficacy in depression associated with MS

The Goldman Consensus Group reported that individuals with MS and depression-spectrum illness generally respond well both to medical and psychotherapeutic treatments for depression. The consensus judgment of these clinicians is that integrated medical and psychotherapeutic approaches are the best. Those controlled observations which are available mostly corroborate this clinical judgment.84 There is additional evidence from general psychiatry that a combination of cognitive–behavioral psychotherapy and antidepressant medication is more effective than either alone in the treatment of chronic depressive disorders.85

Despite the favorable impression with regard to treatment response of the affective disorders in MS populations, these disorders are not recognized by treating clinicians, and do not routinely receive treatment.86 Suicide prevention is partly separable from the treatment of depression, but also begins with clinical recognition of suicidal ideation and depression. The interactions between the clinician and the MS patient that result in this failure to recognize depressive syndromes are not fully understood, but probably include resistance to disclosure on the part of the patient, as well as failure to actively screen and diagnose on the part of the clinician. The current realities of medical economics in private practice settings are presently perceived as constraining appropriate attention to psychosocial issues in patient care.

With regard to the psychotherapies, most clinical reports have described results from group, or from cognitive–behavioral techniques.

Mixed psychotherapies using a group format, and a cognitive–behavioral orientation for the interventions have been shown to reduce depression severity in treated MS groups compared with wait-listed controls.87 Indivi-
dual psychotherapy using a cognitive–behavioral approach and a six-session format has been shown to lower self-report measures of depression compared with ‘usual’ neuromedical treatment. There is also a report that a 25-week course of insight-oriented group therapy lowered depressive symptoms on the Minnesota Multiphasic Personality Inventory. There is one controlled study of desipramine versus placebo in a cohort of MS patients with major depressive disorder, showing significant improvement in depression in the pharmacologically treated group over a six-week period. There is an open trial report of the efficacy of the serotonin reuptake inhibitor, sertraline, in 11 depressed MS patients. All 11 patients were able to tolerate a dose of 100 mg per day, and all but one improved with regard to depressive features over a three-month period.

A recent comparative outcome trial randomly assigned 63 patients with comorbid diagnoses of MS and major depressive episode to one of three 16-week treatments; an individual cognitive behavioral psychotherapy focused on teaching coping skills, a supportive–expressive group psychotherapy focused on facilitating expression of emotions and provision of social support, or sertraline with a modal dose of 150 mg per day. The cognitive behavioral psychotherapy and sertraline were equivalent in efficacy, and both were superior to the supportive–expressive group psychotherapy. This study also provided evidence of an in vitro alteration of interferon-gamma production by T lymphocytes during the course of the treatment, suggesting a way in which the treatment of depression could theoretically affect the neurobiology of the disease.

The treatment of depression is a complex matter, which has to be individualized for each person. Still, the Consensus Group felt that some integrated approach involving psychotherapy and medication was the gold standard to be used, at least for the more severe depressions.

Summary and recommendations

The summary conclusions from this conference were that persons with MS are at increased risk for depressive spectrum disorders, which are a cause of significant suffering and disability. The etiology of depressive spectrum disorders in MS is not completely understood, but is thought to be multifactorial, with psychological, social and neurobiological factors all playing a role — and potentially immunologic and genetic factors as well. The natural history of depressive spectrum disorders in the MS population is not definitely known. However, the administration of various psychotherapeutic and psychopharmacologic treatments is generally accepted as effective for these depressive syndromes in MS patients. Despite the availability of such effective therapies to treat these disorders, our present care delivery systems in the US fail to identify over half of patients with these depressive disorders. When depressed MS individuals are identified, many are not properly treated. There was a strong consensus among conference participants that resources should be directed toward improving the application of currently available knowledge regarding the identification and treatment of depressive spectrum disorders (broadly defined) in MS. In addition, it would be desirable to have a better understanding of the pathophysiology of depression in MS, and better information concerning efficient approaches to treatment.

Specific recommendations from the Goldman Consensus Conference of 2002 include the following:

1) Clinical groups which routinely care for MS patients should institute regular screening measures for the identification of depression, such as the Beck Depression Inventory, using a threshold of 13 for positive screens.

2) Patients who meet screening thresholds for depression, or who endorse any positive responses to suicide inquiries, should be actively assessed for severity and quality of depression, and considered for follow-on treatment recommendations.

3) Treatment plans for depression among MS patients should be individualized, using psychotherapeutic, psychopharmacologic, or integrated approaches, depending upon individual circumstances, and preferences. Available evidence suggests that pharmacotherapy and certain psychotherapies are equally effective for depressive disorders in MS populations, yet the Consensus Group strongly recommends that these treatment modalities be combined in an integrated biopsychosocial treatment plan whenever possible. Treatment plans should be followed through to eradication of depressive symptomatology.

4) Greater standardization of the therapeutic approach to depression in MS should be sought, through the development and testing of an algorithm which is uniquely crafted to this clinical domain.

5) Continuing clinical research should be encouraged into the neurobiologic and psychologic bases of depressive disorders in MS patients, and into therapeutic responses to currently available and newly developing treatment modalities.

References

Goldman Consensus statement on depression in MS
Goldman Consensus Group

6 Joffe RT, Lippert GP, Gray TA Sawa G, Horyath Z. Mood

7 Patten SB and Metz LM. Depression in Multiple Sclerosis.

8 Sadovnick AD, Eisen K, Ebers GC, Paty DW. Cause of death in

9 Feinstein A, Feinstein K. Depression associated with multiple

Multiple Sclerosis

Arnett PA, Higginson CI, Voss WD, Randolph JJ, Grandey AA. Relationship between coping, depression, and cognitive dys-

Nyenhuis DL, Rao SM, Zajecka JM, Luchetta T, Bernardin L, Garron DC. Mood disturbance versus other symptoms of

Appendix I

Lillian Goldman Consensus Conference on the Identification and Treatment of Affective Disorders in MS

17–18 January 2002

Participants

<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Institution</th>
<th>Institution Address</th>
<th>Phone Number</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Arnett</td>
<td>PhD, Penn State University Dept of Psychology</td>
<td>522 Moore Building, University Park, PA 16802-3105</td>
<td>814-863-1733</td>
<td>paa6@psu.edu</td>
</tr>
<tr>
<td>Aliza Ben-Zacharia</td>
<td>MScN, Nurse Practitioner Corinne Goldsmith Dickson Center for MS</td>
<td>Mt. Sinai Medical Center, New York, NY</td>
<td>212-241 0538</td>
<td></td>
</tr>
<tr>
<td>Ralph Benedict</td>
<td>PhD, SUNY Buffalo School of Medicine Department of Neurology</td>
<td>462 Grider StBuffalo, NY 14215</td>
<td>716-898-4905</td>
<td>benedict@acsu.buffalo.edu</td>
</tr>
<tr>
<td>Julie Bobholz</td>
<td>PhD, MC Clinic at Froedtert Medical College of Wisconsin</td>
<td>9200 West Wisconsin Avenue Milwaukee, WI 53226</td>
<td>414-805-5667</td>
<td>jbobholz@mcw.edu</td>
</tr>
<tr>
<td>Lauren Caruso</td>
<td>PhD, Clinical Neuropsychologist Hospital for Joint Diseases</td>
<td>215 East 79th Street Apartment 11-D New York, NY 10021</td>
<td>212-717-2711</td>
<td>dcaruso@gmail.com</td>
</tr>
<tr>
<td>Gordon Chelune</td>
<td>PhD, Cleveland Clinic Foundation Mellen Center for MS</td>
<td>9500 Euclid Avenue, U-10 Cleveland, OH 44195-5244 216-444-5984</td>
<td></td>
<td>cheluneg@ccf.org</td>
</tr>
<tr>
<td>Darcy Cox</td>
<td>Psy.D, Neuropsychologist UCSF Multiple Sclerosis Center</td>
<td>350 Parma River Ave, Suite 908 San Francisco, CA 94117</td>
<td>415 863 3286</td>
<td>darcy@itsa.ucsf.edu</td>
</tr>
<tr>
<td>Gary Cutter</td>
<td>PhD, AMC Cancer Research Center University of Nevada Reno</td>
<td>3329 Sandhurst Road Birmingham, AL 35223</td>
<td>404-295-3840</td>
<td>cutterg@prodigy.net</td>
</tr>
<tr>
<td>Terry DiLorenzo</td>
<td>PhD</td>
<td>10 Windsor Drive Park Ridge, NJ 07656</td>
<td>missing</td>
<td></td>
</tr>
<tr>
<td>John DeLuca</td>
<td>PhD, Professor of Physical Medicine and Rehabilitation, UMDNJ; and Kessler Medical Rehabilitation Research Corporation</td>
<td>1199 Pleasant Valley Way West Orange, NJ 07092</td>
<td>973 243 6974</td>
<td>jdeluca@kmrrec.org</td>
</tr>
<tr>
<td>Jane Epstein</td>
<td>MD, Department of Psychiatry, Box 140 NY-Presbyterian Hospital/Weill Cornell Medical College</td>
<td>525 East 68th Street New York, NY 10021</td>
<td>212-746-3976</td>
<td>jeps@aol.com</td>
</tr>
<tr>
<td>Name</td>
<td>Title/Institution</td>
<td>Institution Address</td>
<td>Phone Number</td>
<td>Email Address</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Anthony Feinstein</td>
<td>MD Associate Professor</td>
<td>Department of Psychiatry Sunnybrook & Women’s College Health Science Centre</td>
<td>2075 Bayview Avenue Toronto, Ontario, Canada M4N 3M5</td>
<td>416-480-4216 ant.feinstein@utoronto.ca</td>
</tr>
<tr>
<td>Stephen J Ferrando</td>
<td>MD New York Presbyterian Hospital Department of Psychiatry</td>
<td>525 E. 68th St Box 181 NY, NY, 10021</td>
<td></td>
<td>sjferran@med.cornell.edu</td>
</tr>
<tr>
<td>Jill Fischer</td>
<td>PhD Consultant, Neuropsychology and Health Outcomes Research</td>
<td>170 Fuller Lane Winnetka, IL 60093</td>
<td></td>
<td>847-784-8654 FISCHERJS54@aol.com</td>
</tr>
<tr>
<td>Fred Foley</td>
<td>MD Gimbel MS Care Center</td>
<td>246 Webb Avenue River Edge, NJ 07661</td>
<td>201-967-0071 Ffoleyl@aol.com</td>
<td></td>
</tr>
<tr>
<td>Carl Granger</td>
<td>MD University at Buffalo South Campus</td>
<td>270 Northpoint Parkway, suite 300 Amherst, NY 14228</td>
<td>716 8177800 Cgranger@udsmr.org</td>
<td></td>
</tr>
<tr>
<td>June Halper</td>
<td>MSN Executive Director Gimbel MS Care Center</td>
<td>718 Teaneck Road Teaneck, NJ 07666</td>
<td>201-837-0727 Jhalper24@aol.com</td>
<td></td>
</tr>
<tr>
<td>Nancy Holland</td>
<td>EdD Vice President, Professional Resource Center National Multiple Sclerosis Society</td>
<td>733 Third Avenue 6th Floor New York, NY 10017</td>
<td>212-476-0453 Nancy.holland@nmss.org</td>
<td></td>
</tr>
<tr>
<td>Jeffery Kocsis</td>
<td>PhD Yale University Veterans Administration Medical Center</td>
<td>Neuroscience Research Center 950 Campbell Avenue, Bldg. 34 (127-A) West Haven, CT 06516</td>
<td></td>
<td>203-785-4085 missing</td>
</tr>
<tr>
<td>Rosalind Kalb</td>
<td>PhD Director, Professional Resource Center National Multiple Sclerosis Society</td>
<td>733 Third Avenue 6th Floor New York, NY 10017</td>
<td>212-986-3240 Rosalind.kalb@nmss.org</td>
<td></td>
</tr>
<tr>
<td>Nicholas LaRocca</td>
<td>PhD Health Care Delivery and Policy Research Program National Multiple Sclerosis Society</td>
<td>733 Third Avenue 6th Floor New York, NY 10017</td>
<td>212-986-3240 Nicholas.larocca@nmss.org</td>
<td></td>
</tr>
<tr>
<td>Fred Lublin</td>
<td>MD Director Corinne Goldsmith Dickinson Center for Multiple Sclerosis Mount Sinai Medical Center</td>
<td>5 East 98th Street New York, NY 10029</td>
<td>212-241-6854 fred.lublin@msm.edu</td>
<td></td>
</tr>
<tr>
<td>Aaron Miller</td>
<td>MD Director Maimonides MS Care Center Division of Neurology</td>
<td>4802 Tenth Avenue Brooklyn, NY 11219</td>
<td>718-283-7470 amiller@maimonides.org</td>
<td></td>
</tr>
<tr>
<td>Deborah Miller</td>
<td>PhD Area U-10 The Cleveland Clinic Foundation</td>
<td>9500 Euclid Avenue Cleveland, Ohio 44195</td>
<td>216-444-8605 Miller@ccf.org</td>
<td></td>
</tr>
<tr>
<td>Sarah Minden</td>
<td>MD Brigham & Women’s Hospital Division of Psychiatry</td>
<td>75 Francis Street Boston, MA 02115 (H) 238 Vermont Street, West Roxbury, MA 02132</td>
<td></td>
<td>SMINDEN@PART NERS.ORG</td>
</tr>
<tr>
<td>David C. Mohr</td>
<td>PhD UCSF Departments of Psychiatry & Neurology Veterans Administration Medical Center Mental Health Services (116-A)</td>
<td>4150 Clement St San Francisco, CA 94121</td>
<td>415-221-4810 dmohr@itsa.ucsf.edu ext 4636 Fax 415-750-6921</td>
<td></td>
</tr>
<tr>
<td>Linda Morgante</td>
<td>MSN Director of Clinical Services Maimonides MS Care Center Division of Neurology</td>
<td>4802 Tenth Avenue Brooklyn, NY 11219</td>
<td>718-283-7470 Imorgante@maimonides.org</td>
<td></td>
</tr>
<tr>
<td>Marie Namey</td>
<td>MSN Mellen Center for MS</td>
<td>9500 Euclid Avenue, U-10 Cleveland, OH 44195-5244 800-223-2273 ext. 48607</td>
<td></td>
<td>nameym@ccf.org</td>
</tr>
<tr>
<td>Scott B. Patten</td>
<td>MD, PhD University of Calgary Heritage Medical Research Bldg</td>
<td>3330 Hospital Drive N.W. Calgary, AB, Canada T2N 4N1</td>
<td>403-220-8752 patten@ucalgary.ca</td>
<td></td>
</tr>
</tbody>
</table>
Appendix (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Institution</th>
<th>Institution Address</th>
<th>Phone Number</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stephen M. Rao</td>
<td>PhD Professor of Neurology Division of Neuropsychology Medical College of Wisconsin</td>
<td>9200 West Wisconsin Avenue Milwaukee, Wisconsin 53226</td>
<td>414-456-4665</td>
<td>srao@mcw.edu</td>
</tr>
<tr>
<td>Joseph Ricker</td>
<td>PhD Associate Professor, Dept of Physical Medicine and Rehab, U. of Pittsburgh</td>
<td>3471 Fifth Ave, Suite 201, Pittsburgh, Pa. 15213</td>
<td>412 648 6979</td>
<td>ricker@pitt.edu</td>
</tr>
<tr>
<td>Brian Rosenthal</td>
<td>MD Columbia University</td>
<td>C/o Hearthstone Foundation 205 West End Avenue Apt 29K New York, NY 10029</td>
<td>212-580-1143</td>
<td>bjrdoc@rcn.com</td>
</tr>
<tr>
<td>Randolph Schiffer</td>
<td>MD Texas Tech University Health Sciences Center Division of Neuropsychiatry TTUHSC</td>
<td>3601 4th Street, STOP 8103 Lubbock, TX 79430</td>
<td>randolph.schiffer@ttmc.ttuhsce.edu</td>
<td></td>
</tr>
<tr>
<td>Maria Schulties</td>
<td>PhD Kessler Medical Rehabilitation Research Corporation -UMDMJ</td>
<td>Neuropsychology & Neuroscience Lab 1199 Pleasant Valley Way West Orange, NJ 07052</td>
<td>(973) 731-3900 ext 2270</td>
<td>mschultheis@kmrrec.org</td>
</tr>
<tr>
<td>Steven Schwid</td>
<td>MD University of Rochester-School of Medicine and Dentistry</td>
<td>601 Elmwood Ave, Box 605 Rochester, NY 14642 Room 6-8521</td>
<td>716-275-7854</td>
<td>Steven_schwid@urmc.rochester.edu</td>
</tr>
<tr>
<td>Heather Wishart</td>
<td>PhD Dartmouth Medical School Neuropsychology Program Department of Psychiatry</td>
<td>HB 7750 Hanover, NH 03755</td>
<td>603-650-5824</td>
<td>Heather_A_Wishart@Dartmouth.edu</td>
</tr>
</tbody>
</table>